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Abstract

The dynamic buckling of truncated conical shells made of functionally graded materials (FGMs) subject to a uniform

axial compressive load, which is a linear function of time, has been studied. The material properties of functionally graded

shells are assumed to vary continuously through the thickness of the shell. The variation of properties followed an

arbitrary distribution in terms of the volume fractions of the constituents. The fundamental relations, the dynamic stability

and compatibility equations of functionally graded truncated conical shells are obtained first. Applying Galerkin’s method,

these equations have been transformed to a pair of time dependent differential equation with variable coefficient and

critical parameters obtained using the Runge–Kutta method. The results show that the critical parameters are affected by

the configurations of the constituent materials, compositional profile variations, loading speed variations and the variation

of the shell geometry. Comparing the results of this study with those in the literature validates the present analysis.

r 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Functionally graded materials (FGMs) are composite materials with gradient compositional variation of
the constituents (e.g. metallic and ceramic) from one surface of the material to the other that results in
continuously varying material properties. The concept of FGM [1], initially developed for super heat resistant
materials to be used in space planes or nuclear fusion reactors, is now of interest to designers of functional
materials for energy conversion [2], dental and orthopedic implants [3], sensors and thermo-generators [4].
FGMs are also used for joining dissimilar materials [5]. A general account of FGMs, including fabrication and
characterization of properties, is given in Suresh and Mortensen [5] and Miyamoto et al. [6].

The stability and vibration behaviors of FGM shell structures have attracted increasing research effort,
most of which have been limited to the vibration analysis. A formulation of the stability problem for
functionally graded hybrid composite plates, where a micro mechanical model was employed to solve the
buckling problem for rectangular plates subjected to uniaxial compression presented by Birman [7]. Loy et al.
[8] studied the vibration of stainless steel and nickel graded cylindrical shells under simply supported ends by
using Love’s theory and Rayleigh–Ritz method. Pradhan et al. [9] presented the vibration of a functionally
graded cylindrical shell. The effects of boundary condition and volume fractions on the natural frequencies
ee front matter r 2007 Elsevier Ltd. All rights reserved.
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Nomenclature

es, ey, esy Strain components on the reference
surface of the conical shell

E Young’s modulus of the FG conical
shell

E0t, E0b Young’s moduli of purely ceramic and
metal conical shells, respectively

Et, Eb Young’s moduli of the ceramic and metal
surfaces of the FG conical shell, respec-
tively

f 1ðtÞ; f̄ 1ðtÞ amplitude and dimensionless ampli-
tude parameter, respectively

F stress function
h thickness of the conical shell
L length of the conical shell
ms, my, msy moment resultants
ns, ny, nsy force resultants
n0

s ; n
0
y; n

0
sy membrane forces prior to buckling

n, m wavenumbers
nst
cr; n

din
cr circumferential wavenumbers corre-

sponding to critical static and dynamic
axial loads, respectively

N, N0 static axial load and axial loading speed,
respectively

Nst
cr; N̄

st
cr critical static axial load and critical
dimensionless static axial load, respec-
tively

P, Pj (j ¼ �1 to 3) material properties
Pt, Pb material properties of the top and bot-

tom surfaces of the conical shell, respec-
tively

Qij reduced stiffness

R1, R2 average radii of the small and large bases
of the conical shell

S coordinate axis through the vertex on the
reference surface of the cone

S1, S2 inclined distances of the bases of the cone
from the vertex, respectively

tcr; t̄cr critical time and critical dimensionless
time parameter, respectively

T temperature in Kelvin
Vc, Vm volume fractions of ceramic and metal

surfaces, respectively
w displacement of the reference surface in

the inwards normal direction z
z̄ ¼ z=h dimensionless thickness coordinate
y angle of rotation around the longitudinal

axis starting from a radial plane
n Poisson’s ratio of the FG conical shell
nt, nb Poisson’s ratios of the ceramics and

metal surfaces of the FG conical shell,
respectively

n0t, n0b Poisson’s ratios of purely ceramic and
metal conical shells, respectively

r1 density of the FGM conical shell
rt, rb densities of ceramic and metal surfaces of

the FG conical shell, respectively
r0t, r0b densities of purely ceramic and metal

conical shells, respectively
ss, sy, ssy stress components
scr critical static axial stress
x independent variable
z coordinate axis in the inwards normal

direction of the reference surface of the
cone
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were studied. Reddy and Cheng [10] established the exact correspondences between the vibration frequencies
of membranes and FGM spherical shallow shells. A self-consistent constitutive framework is proposed to
describe the behavior of a generic three-layered system containing a FGM layer subjected to thermal loading
given by Pitakthapanaphong and Busso [11]. Woo and Meguid [12] studied the post-buckling behaviors of
functionally graded plates and shallow shells under transverse mechanical loads and temperature field. Yang
and Shen [13] studied parametric resonance of shear deformable functionally graded cylindrical panels in
thermal environment. Shen [14] presented a post-buckling analysis for a functionally graded cylindrical thin
shell of finite length subjected to external pressure and in thermal environments. Kitipornchai et al. [15]
further evaluated the sensitivity of the nonlinear vibration characteristics of FGM plates to the initial
geometric imperfection of arbitrary shape. Chen et al. [16] investigated free vibration of a functionally graded
piezoelectric hollow cylinder filled with a compressible fluid medium. Based on the high order shear
deformation theory, Patel et al. [17] gave the finite element analysis for the free vibration of FGM elliptical
cylindrical shell. Liew et al. [18] presented the nonlinear vibration analysis for layered cylindrical panels
containing FGMs and subjected to a temperature gradient arising from steady heat conduction through the
panel thickness. A finite element formulation based on FSDT is used to study the thermal buckling and
vibration behavior of truncated FGM conical shells in a high-temperature environment and presented by
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Bhangale et al. [19]. Bhangale and Ganesan [20] studied free vibration anisotropic and linear magneto-electro-
elastic FG plates have been carried out semi-analytical finite element method.

The buckling of conical shells is of fundamental interest in aircraft and missile design as thin-walled shells
have constituted primary structural parts for many years, and because the composite materials are nowadays
extremely attractive due to their considerable strength-to-weight ratio. They are subjected to various loading
both static and dynamic. Studies of static buckling of conical shells under axial load have received its due
importance in the literature [21–31].

It is well known, due to the difficulties emerging from the solution and theoretical analysis of the stability
problems of shells, such as suddenly applied loads, has not been studied sufficiently. So it is important to study
the dynamic stability behavior of conical shells under suddenly applied loads. It is known that, the researchers
use two concepts in the solution of the dynamic stability problems. A relatively well-defined class of dynamic
stability problems is the dynamic buckling behavior under step loading or impulsive loading. There are
different criteria for the solution of the buckling problems. For example: Simitises and Budiansky–Roth
criteria [32–35].

Another important class of dynamic stability problems is the buckling behavior under a-periodic dynamic
loading. This concept is based on the assumption that, the stress and the deformation occurring in different
points of the deformable body under the effect of dynamic load, may suddenly propagate to whole volume of
the body. When the equation of the motion of the system (shell) element is constituted, an inertia force
corresponding to the normal displacement is taken into consideration. Consequently, in this state,
propagation of elastic waves in the middle surface was not taken into consideration. The solution of a
dynamic stability problem is reduced to the determination of the dynamic critical load or critical time for
certain loading cases. In the literature, one may find many criteria allowing for determination of dynamic
critical loads. One of the important criterion was proposed by Volmir [36] where the dynamic critical load
corresponds to the amplitude of force (of constant duration) at which the maximum shell defection is equal to
some constant value k (k-one half or one shell thickness). Pioneering papers on dynamic buckling of conical
shells subjected to a-periodic dynamic axial loads were written by Wolmir [36] and Shumik [37]. In recent
years, the buckling problems of the homogeneous and non-homogeneous orthotropic conical shells under a-
periodic dynamic external pressure were also extensively studied in Refs. [38–42].

Researches on the dynamic stability of FGM plates and shells subjected to various loads by using different
methods and criterions are limited. Praveen and Reddy [43] analyzed the nonlinear static and dynamic response of
heated functionally graded ceramic-metal plates subjected to dynamic lateral loads by the finite element method.
Reddy and Chin [44] presented thermal-mechanical analysis of functionally graded cylinders and plates. Reddy
[45] developed both theoretical and finite element formulations for thick FGM plates according to the higher-
order shear deformation plate theory, and studied the nonlinear dynamic response of FGM plates subjected to
sudden applied uniform pressure. Ng et al. [46] studied the parametric resonance or dynamic stability of FGM
cylindrical thin shells under periodic axial loading. Yang and Shen [47] studied the dynamic response of initially
stressed FG rectangular thin plates subjected to partially distributed impulsive lateral loads and without or resting
on an elastic foundation. To achieve the active control of the static and dynamic response of FGM shells, Liew et
al. [48], He et al. [49] and Ng et al. [50] used the piezoelectric materials as the integrated sensors/actuators. Vel and
Batra [51] analyzed forced vibrations of simply supported functionally graded plates and their response to time-
dependant thermal loads (within the context of uncoupled quasi-static linear thermo-elasticity theory) using the
power series method. By using Galerkin technique together with Ritz type variational method, Sofiyev and
Schnack [52] and Sofiyev [53,54] obtained critical parameters for cylindrical thin shells under a linearly increasing
dynamic torsional loading, for functionally graded truncated conical shells under a-periodic external pressure and
for cylindrical shells under axial compressive load, which is a power function of time. Kubiak [55] studied the
dynamic response of a thin walled plate with varying widthwise material properties subjected to in-plane pulse
loading of rectangular shape. Budiansky–Hutchinson criterion of dynamic stability was chosen to determine the
critical value of dynamic load factor. Tylikowski [56] studied the dynamic stability of the FG plates subjected
time-dependent, in plane forces, using the direct Liapunov method and asymptotic stability criteria. Zhu et al. [57]
presented a three-dimensional theoretical analysis of the dynamic instability region of functionally graded (FG)
piezoelectric circular cylindrical shells. A set of Mathieu–Hill equations governing the instability problem is
derived and analyzed by Bolotin’s method. Wu et al. [58] investigated the dynamic stability of thick FGM plates
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subjected to aero-thermo-mechanical loads, using a novel numerical solution technique, the moving least squares
differential quadrature method. Ganapathi [59] studied the dynamic stability behavior of a clamped FGMs
spherical shell structural element subjected to external pressure load. He solved the governing equations
employing the Newmark’s integration technique coupled with a modified Newton–Raphson iteration scheme.

The dynamic buckling problems of composite truncated conical shells that composed of FGM subjected to
compressive load depending of time have not been studied yet. Therefore, it is very important to develop an
accurate, reliable analysis towards the understanding of the dynamic buckling characteristics of the FGM structures.

In this paper, the dynamic buckling of functionally graded truncated conical shells subjected to axial
compressive load varying as a linear function of time is studied by using Galerkin and Runge–Kutta methods,
and applying criterion proposed by Wolmir [36]. Extensive numerical results are presented in dimensionless
tabular forms to demonstrate the influence of material compositions, loading speed, as well as the shell
geometry on the critical dimensionless static axial load and critical dimensionless time parameter values.
The numerical results are validated against known data in the literature.

2. Analytical model of FGM material properties

A truncated conical shell made of FGM is shown in Fig. 1, where R1 and R2 indicate the radii of the cone at
its small and large ends, respectively, g denotes the semi-vertex angle of the cone, H is height of truncated
conical shell, L is length of truncated conical shell, S axis lies along the generator on the curvilinear reference
surface of the cone, the y axis lies in the circumferential direction on the reference surface of the cone and the z

axis, being perpendicular to the plane of the first two axes, lies in the inwards normal direction of the cone, and
the distances from the vertex to the small and large bases are S1 and S2, respectively.

Here we consider an FGM shell made of a mixture of ceramics and metals. We assume that the composition
is varied from the top to bottom surface, i.e. the top surface (z ¼ h/2) of the shell is ceramic-rich whereas the
bottom surface (z ¼ �h/2) is metal-rich. In such a way, the effective material properties P, like Young’s
modulus E or Poisson’s ratio n or mass density r, can be expressed as

P ¼ PtVc þ PbV m, (1)

where Pt and Pb denote the temperature-dependent properties of the top and bottom surfaces of the shell,
respectively; Vc and Vm are the ceramic and metal volume fractions and the related by

V c þ Vm ¼ 1. (2)

The compositional gradation of the FGM shell is defined by the volume fraction of the ceramic phase. Here,
the following functions of Vc will be considered [11]:

1: Linear : V c ¼ z̄þ 0:5 (3.1)

2: Quadratic : Vc ¼ z̄þ 0:5ð Þ
2 (3.2)

3: Inverse quadratic : V c ¼ 1� 0:5� z̄ð Þ
2 (3.3)

4: Cubic : Vc ¼ 3 z̄þ 0:5ð Þ
2
� 2 z̄þ 0:5ð Þ

3; (3.4)
Fig. 1. The geometry and coordinate system of a truncated conical shell.
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Fig. 2. Different composition profiles used to describe the variation of ceramic volume fraction in the FGM conical shell (dashed line with

diamonds ¼ linear; solid line with circles ¼ quadratic; dashed line with triangles ¼ inverse quadratic; bold solid line ¼ cubic).
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where z̄ ¼ z=h is dimensionless thickness coordinate. The variation of the ceramic volume fraction through the
thickness of FG shell is shown in Fig. 2. The vertical-axis stands for the volumetric percentage of ceramic
while horizontal-axis represents the position along the thickness of FG shell. Metal is the dominant
constituent at the bottom layer of FG shell and its volume fraction is decreased continually from the bottom
to the top of FG shell. At the top layer of FG shell, ceramic is the dominant constituent.

From Eqs. (1)–(3), the effective Young’s modulus E, Poisson ratio n and the mass density r, of an FGM
shell can be written as

E ¼ ðEt � EbÞVc þ Eb; n ¼ ðnt � nbÞVc þ nb; r ¼ ðrt � rbÞV c þ rb. (4)

It is assumed that Et, Eb, nt, nb, rt and rb are the Young’s modulus, Poisson’s ratio and density of the metal
and ceramic surfaces of the FG conical shell, respectively and are the functions of temperature, as shown in
Section 4, so that E, n and r are functions of temperature and position.

From these equations the followings are obtained:

E ¼ Et; n ¼ nt; r ¼ rt; at z̄ ¼ 0:5;

E ¼ Eb; n ¼ nb; r ¼ rb; at z̄ ¼ �0:5:

(
(5)

Therefore, the material properties along the thickness of the shells, such as Young’s modulus E, Poisson’s
ratio n can be determined according to Eq. (4).
3. The governing equations

With the help of these material properties, the stress–strain relations for thin conical shells can be
determined as

ss

sy
ssy

2
64

3
75 ¼

Q11 Q12 0

Q12 Q22 0

0 0 Q66

2
64

3
75

es �
q2w

qs2

ey �
1

s2
q2w
qj2
�

1

s

qw

qs

esy �
1

s

q2w
qsqj

þ
1

s2
qw

qj

2
666666664

3
777777775
, (6)
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where j ¼ y sin g, sS, sy and sSy are the stresses components, eS, ey and eSy are the strains components
on the reference surface, w is the displacement of the reference surface in the normal direction, positive
towards the axis of the cone and assumed to be much smaller than the thickness and Qij (i, j ¼ 1, 2, 6) are
defined as

Q11 ¼ Q22 ¼
ðEt � EbÞVc þ Eb

1� ðnt � nbÞVc þ nb½ �
2
, (7)

Q12 ¼
ðEt � EbÞVc þ Eb½ � ðnt � nbÞV c þ nb½ �

1� ðnt � nbÞV c þ nb½ �
2

, (8)

Q66 ¼
ðEt � EbÞVc þ Eb

2 1þ ðnt � nbÞVc þ nb½ �
(9)

The following integrals define the stress and moment resultants:

ðns; ny; nsyÞ ¼ h

Z 0:5

�0:5
ðss; sy;ssyÞdz̄; ðms;my;msyÞ ¼ h2

Z 0:5

�0:5
ðss;sy; ssyÞz̄dz̄. (10)

Introducing an Airy stress function F, the force resultants (ns, ny, nsy) are given as follows:

ðns; ny; nsyÞ ¼
1

s2
q2F

qj2
þ

1

s

qF

qs
;

q2F

qs2
; �

1

s

q2F
qsqj

þ
1

s2
qF

qj

� �
. (11)

According to the membrane theory of shells, the dynamic stability and strain compatibility equations are
given in the following form with loading terms in the coefficients of the derivatives of displacement w:

q2ms

qs2
þ

2

s

qms

qs
þ

2

s

q2msy
qsqj

�
1

s

qmy

qs
þ

2

s2
qmsy

qj
þ

1

s2
qmsy

qj2
þ

ny

s
cot g

þ n0
s

q2w

qs2
þ

n0
y

s

1

s

q2w
qj2
þ

qw

qs

� �
þ 2n0

sy
q
qs

1

s

qw

qj

� �
� r1h

q2w

qt2
¼ 0, ð12Þ

cot g
s

q2w
qs2
�

2

s

q2esy

qsqj
�

2

s2
qesy

qj
þ

q2ey
qs2
þ

1

s2
q2es

qj2
þ

2

s

qey

qs
�

1

s

qes

qs
¼ 0, (13)

where the following definition applies:

r1 ¼
Z 0:5

�0:5
ðrt � rbÞV c þ rb

� �
dz̄. (14)

The functionally graded conical shell subjected to axial compressive load varying as a linear function of time
in the form:

n0
S ¼ �N �N0t, (15)

where N0 is the axial loading speed, N is the static axial load and t is the time.
Substituting the constitutive law (6), Eqs. (10), (11) and (15) into Eqs. (12) and (13), then considering the

independent variables s ¼ s1e
x and F ¼ F1e

2x, the dynamic stability and strain compatibility equations of FG
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conical shells can be reduced to

A2e
2x q

4F1

qx4
þ 4A2e

2x q
3F 1

qx3
þ 4A2 þ s1e

xcot g
� �

e2x
q2F1

qx2

þ 3s1cot ge2x
qF 1

qx
þ 2s1cot ge2xF 1 þ A2e2x

q4F 1

qj4
þ 2 A1 � A5ð Þe2x

q4F 1

qx2qj2

þ 4 A1 � A5ð Þe2x
q3F1

qxqj2
þ 2 A1 � A5 þ A2ð Þe2x

q2F1

qj2

� A3
q4w
qj4
� 2 A4 þ A6ð Þ

q4w

qx2qj2
þ 4 A4 þ A6ð Þ

q3w
qxqj2

� 2 A4 þ A6 þ A3ð Þ
q2w

qj2

� A3
q4w

qx4
þ 4A3

q3w

qx3
� 4A3

q2w

qx2
� s21e

2x N þN0tð Þ �
qw

qx
þ

q2w

qx2

� �
� r1hs41e4x

q2w
qt2
¼ 0, ð16Þ

B1
q4F1

qx4
þ 4

q3F1

qx3
þ 4

q2F 1

qx2
þ

q4F 1

qj4

� �
þ 2ðB5 þ B2Þ

q4F1

qx2qj2
þ 2

q3F1

qxqj2

� �
þ 2 B5 þ B2 þ B1ð Þ

q2F1

qj2

¼ e�2x

B4
q4w
qj4
þ 2 B3 � B6ð Þ

q4w

qx2j2
þ 4 B6 � B3ð Þ

q3w
qxqj2

þ 2 B3 þ B4 � B6ð Þ
q2w

qj2

þB4
q4w

qx4
� 4B4

q3w

qx3
þ 4B4 � s1e

xcotg
� �q2w

qx2
þ s1e

xcotg
qw

qx

2
66664

3
77775, ð17Þ

where expressions Ai, Bi (i ¼ 1–6) are given in Appendix (A.1–A.14).
Eqs. (16) and (17) are the basic equations for dynamic stability of FG conical shells subjected to dynamic

axial compressive load.

4. The solution of governing equations

Considering a truncated conical shell with simply supported edge conditions, the solutions for Eq. (17) take
the following form [40]:

w ¼ f 1ðtÞe
xsinb1xsinb2j (18)

where f1(t) is time dependent amplitude and the following definitions apply:

b1 ¼
mp
x0
; b2 ¼

n

sin g
; x0 ¼ ln

s2

s1
; x ¼ ln

s

s1
. (19)

Function (18) satisfies the periodical conditions of the normal displacements and all orders of the derivatives
for normal displacements and the following geometrical boundary conditions Lu and Chung [60] and
Agamirov [40]:

w ¼ 0; at x ¼ 0 and x ¼ x0, (20)

q2w

qx2
�

qw

qx
¼ 0; at x ¼ 0 and x ¼ x0. (21)

Substituting Eq. (18) into Eq. (17) and by applying the superposition principle the particular solution to
resultant equation, can be obtained as

F 1 ¼ ðK1sinb1xþ K2cosb1xþ K3e�xsinb1xÞf 1ðtÞsinb2j (22)

where the following definitions apply:

K1 ¼
b1 b1c0 þ c2

� �
c2
0 þ c2

2

s1cot g; K2 ¼
b1 b1c2 � c0

� �
c2
0 þ c2

2

s1cot g; K3 ¼
c3

c1

, (23)
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where

c0 ¼ B1ðb
4
2 � 3b21Þ þ 2ðB5 þ B2Þb

2
1b

2
2 � 2ðB5 þ B2 þ B1Þb

2
2,

c1 ¼ 2ðB5 þ B2Þb
2
1b

2
2 þ B1ðb

4
1 þ b42 þ 2b21 � 2b22 þ 1Þ,

c2 ¼ 4B1b
3
1 þ 4ðB5 þ B2Þb1b

2
2,

c3 ¼ B4 b22 � 1
� �2

þ b21
h i

þ b21 2 B3 � B6ð Þb22 þ B4ðb
2
1 þ 1Þ

� �
. ð24Þ

Substituting Eqs. (18) and (22) into Eq. (16), then applying Galerkin’s method in the ranges 0pjp2p sin g
and 0pxpx0, after integrating the following equation is obtained:

d2f 1ðtÞ

dt2
þ

q9

r1hq8

U1q1 þU2q2 þU3q3 þ q7

q9

� ðN þN0tÞ

� 	
f 1ðtÞ ¼ 0, (25)

where the following definitions apply:

U1 ¼ A2ðK1b
4
1 þ 4K2b

3
1 � 4K1b

2
1 þ K1b

4
2 � 2K1b

2
2Þ

þ 2b22ðK1b
2
1 þ 2K2b1 � K1Þ A1 � A5ð Þ � K3b

2
1s1cot g, ð26:1Þ

U2 ¼ A2ðK3b
4
1 þ 2K3b

2
1 þ K3 þ K3b

4
2 � 2K3b

2
2Þ þ 2K3b

2
1b

2
2 A1 � A5ð Þ

� A3ðb
4
1 þ 2b21 þ b42 � 2b22 þ 1Þ � 2b21b

2
2ðA6 þ A4Þ, ð26:2Þ

U3 ¼ A2ðK2b
4
1 � 4K1b

3
1 � 4K2b

2
1 þ K2b

4
2 � 2K2b

2
2Þ

� 2b22 A1 � A5ð ÞðK2b
2
1 þ 2K1b1 þ K2Þ þ K3b1s1cot g, ð26:3Þ

q1 ¼
2b21 1� e3x0
� �

12b21 þ 27
� � ; q2 ¼

b21 1� e2x0
� �
4 b21 þ 1
� � ; q3 ¼

b1 e3x0 � 1
� �
4b21 þ 9

,

q4 ¼
b21ð1� e4x0Þ

8 b21 þ 4
� � ; q5 ¼

b1 e4x0 � 1
� �
4ðb21 þ 4Þ

; q6 ¼
b21 e6x0 � 1
� �

12 b21 þ 9
� � ,

q7 ¼ ð�3K2b1 � K1b
2
1 þ 2K1Þq4 � ðK2b

2
1 � 3K1b1 � 2K2Þq5

� �
s1cot g

q8 ¼ s41q6; q9 ¼ s21b1ðq5 � b1q4Þ. ð27:1Þ2ð27:9Þ

At static case, for the critical dimensionless axial load, the following expression is obtained:

N̄
st
cr ¼

Nst
cr

E0th
, (28)

where E0t is Young’s modulus of the homogeneous ceramic and the following definition apply:

Nst
cr ¼

U1q1 þU2q2 þU3q3 þ q7

q9

. (29)

The classical critical static axial load for a truncated conical shell made of a homogeneous isotropic material
was found by Seide [24]:

Ncr
Seide ¼

2pE0h
2cos2gffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

3ð1� n20Þ
q . (30)

When n0
s ¼ 0, the following expression is obtained from Eq. (25) for the frequency of free vibration:

o ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U1q1 þU2q2 þU3q3 þ q7

q9r1h

s
. (31)
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Fig. 3. Variations of the values of critical dimensionless static axial load N̄
st
cr corresponding to z.
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When n0
s ¼ N0t, from Eq. (25), the following dimensionless equation is expressed:

d2 f̄ 1ðtÞ

dt̄2
þQ 1� t̄½ �f̄ 1ðtÞ ¼ 0, (32)

where f̄ 1ðtÞ is dimensionless amplitude parameter, t̄ is dimensionless time parameter and the following
definitions apply:

Q ¼
3

2
�

h2 N̄
st

crðzÞ
h i3

E3
0t

N2
0r1

z2 þ 9=b22
z2 þ 4=b22

s21 þ s22
s41 þ s21s

2
2 þ s42

ð2=b22 þ z2Þb22,

z ¼
b1
b2
; t̄ ¼

N0t

N̄
st

crðzÞE0th
; f̄ 1 ¼

f 1

h
. ð33Þ

Firstly, minimizing the expression (29) according to the wavenumbers (m, n), the minimum values of critical
dimensionless static axial load are obtained. Then, substituting placing the relation z ¼ b1/b2 into the
expression (29) to be used for dynamic problem, the relation N̄

st
crðzÞ is formed. At 0.1pzp2, the smallest value

of the minimum values of the critical dimensionless static axial load corresponding to circumferential
wavenumber is numerically obtained approximately for z ¼ 1 (Fig. 3). Furthermore, it is shown that the
values obtained from the minimization of the static critical load according to the wavenumbers (m, n) are
coincided with the values obtained from the minimization of the static critical load according to the
parameters (z, n).

Then the numerical solution of the dynamic problem is obtained.
Eq. (32) is solved numerically by using Runge–Kutta method with the following initial conditions:

t̄ ¼ 0; f̄ 1 ¼ f̄ 10; df̄ 1=dt̄ ¼ 0. (34)

Solution of Eq. (32) explains a time dependent monotonously increasing function. Furthermore, the
amplitude initially increases slowly but it indicates an instantaneous increase later. The case for the equality of
the amplitude to the shell thickness (beginning of the strong increase for amplitude) corresponds to the
beginning of the loss of stability and is assumed as the stability criterion. Using this criterion t̄cr is found for
variable loading speeds [36].
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5. Numerical results and discussion

5.1. Comparison results

The numerical results are compared with the previous works to demonstrate the performance of the present
study.

Firstly, results that are obtained from present study for values of critical static axial load of isotropic conical
shell are compared with the results of Seide [24]. After transforming the expression (30) obtained for conical
shell in Seide [24] and the expression (29) obtained in present study to the following expressions, computations
are made:

scrSeide ¼
Ncr

Seide

2pRmh cos g
, (35)

scrSofi ¼
Nst

cr

h
. (36)

Computations have been carried out for the following material and shell properties are: E ¼ 2.1� 105MPa;
n ¼ 0.3; L ¼ 0.25R2 sin g; R2/h ¼ 400; Rm ¼ (R1+R2)/2; h ¼ 0.0005m. It shows that the results are very
convenient (Table 1).

To verify the present analysis, the buckling loads for cylindrical shells under axial compression are
calculated and compared in Table 2 with the Donnell-type shell theory solution of Jones and Morgan [61],
with the boundary layer theory solution of Shen [62], and Shen and Li [63]. To be able to make comparisons
with cylindrical shells, in expression (29) g ¼ p/180000E01 must be substituted for the semi-vertex angle
and so R2ER1ER must be assumed. The comparisons for the shell with the following material proper-
ties [61]: E1 ¼ 30� 106 psi; E2 ¼ 0.75� 106 psi; G12 ¼ 0.375� 106 psi; n1 ¼ 0.25; n2 ¼ 0.0625, h ¼ 0.12 in;
R1 ¼ R ¼ 10 in; L ¼ 34.64 in; g ¼ p/180 000 are presented in Table 2. The comparisons show that the present
result is in good agreement with that the results of Jones and Morgan [61], Shen [62], and Shen and Li [63].

To further verify the present analysis, natural vibration frequency is compared with the FG shell in
literature (see Table 3). Computations are made for the natural frequency of FG circular cylindrical shell using
expression (31), and the results are compared with those of Loy et al. [8]. To be able to make comparisons
with FG cylindrical shells, in expression (31) g ¼ p/180 000E01 must be substituted for the semi-vertex angle
and so R2ER1ER must be assumed. In Table 3, first and last columns are the natural frequency values
of homogeneous stainless steel cylindrical shell, the other columns are the values of the FG cylindrical
shell made of stainless steel and nickel. Homogeneous stainless steel material properties are as follows:
Table 1

Comparison of the values of critical static axial stress with those of Seide [24]

scr (MPa)

g 301 451 601 751

Seide [24] 284.05 239.66 175.31 93.096

Present study 283.44 238.25 172.52 89.754

Table 2

Comparison of dimensionless axial buckling load for orthotropic cylindrical shell

Nst
crL

2=ðE2h3
Þ and (m, n)

Jones and Morgan [61] Shen [62] Shen and Li [63] Present study

1482 1481.75 (3, 7) 1481.75 (3, 7) 1481.95 (3, 7)
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Table 3

Comparison of natural frequencies (Hz) for simply supported FG circular cylindrical shells with those of Loy et al. [8]

Circum. wave no (n) ō ¼ o=ð2pÞ ðHzÞ

Loy et al. [8] Present study

Stain. steel Linear Quadratic Linear Quadratic Stain. steel

5 11.542 11.241 11.151 11.935 11.840 12.094

6 16.897 16.455 16.323 17.150 17.018 17.383

7 23.244 22.735 22.635 23.339 23.152 23.648

8 30.573 29.903 29.771 30.447 30.233 30.880

9 38.881 38.028 37.862 38.569 38.260 39.079

10 48.168 46.905 46.529 47.613 47.232 48.242

Table 4

Comparison of the values of critical dimensionless static axial load and of critical dimensionless time parameter with those of Agamirov

[40]

R2/h g Agamirov [40] Present study N0� 10�9 (N/m� s) Agamirov [40] Present study

N̄
st
cr � 103 nstcr N̄

st
cr � 103 ðm; nÞstcr t̄cr ndincr

t̄cr ndincr

500 101 1.42 19 1.415 (18, 18) 1 3.06 26 3.05 28

2.5 4.93 33 4.90 31

5 7.04 40 6.96 42

500 201 1.56 18 1.551 (20, 17) 1 2.94 24 2.94 25

2.5 4.72 31 4.70 27

5 6.81 37 6.56 35

The numbers of buckling waves (m, n) are denoted in parenthesis in present study.
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E0t ¼ 2.0104� 1011N/m2, n0t ¼ 0.3262, r0t ¼ 8166 kg/m3. Material properties of FG shell made of stainless
steel and nickel are as follows: h ¼ 0.002m, R/h ¼ 500, L/R ¼ 20, Et ¼ 2.07788� 1011N/m2, nt ¼ 0.317756,
rt ¼ 8166 kg/m3, Eb ¼ 2.05098� 1011N/m2, nb ¼ 0.31, rb ¼ 8900 kg/m3. The comparisons show that the
present results for FG shell agreed well with those in the literature.

In addition to validate the analysis, results of critical dimensionless static axial load, critical dimensionless
time parameter and dynamic wavenumbers for simply supported homogeneous elastic truncated conical shells
are compared with the results of Agamirov [40], see Table 4. Computations have been carried out for the
following data:
Material properties
 E0 ¼ 2:1� 105 MPa; n0 ¼ 0:3:

Shell properties
 h ¼ 5� 10�4 m; H=R2 ¼ 2; f̄ 10 ¼ 0:001:

Velocity of sound in the material
 V ¼ 5� 103 m=s:
The comparisons show that the present results agreed well with those in the literature.
5.2. Buckling results of FG truncated conical shells

The analysis of the FG truncated conical shells was conducted for two types of ceramic and metal
combinations. The first set of materials considered was Silicon nitride and Nickel, referred to as Si3N4/Ni or
FG-I. The second one was a combination of Zirconia and Titanium, referred to as ZrO2/Ti–6Al–4V or FG-II.
The material properties P can be expressed as a function of temperature as

P ¼ P0ðP�1T
�1 þ 1þ P1T þ P2T2 þ P3T

3Þ, (37)
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Table 5

Temperature-dependent coefficients of Young’s modulus E (MPa), Poisson’s ratio n and mass density r (kg/m3) for ceramics and metals

(Reddy and Chin [44])

Coefficients Et (MPa) nt rt (kg/m
3) Eb (MPa) nb rb (kg/m3)

Si3N4 Ni

P0 3.4843� 105 0.24 2370 2.2395� 105 0.31 8900

P�1 0 0 0 0 0 0

P1 �3.07� 10�4 0 0 �2.794� 10�4 0 0

P2 2.160� 10�7 0 0 �3.998� 10�9 0 0

P3 �8.946� 10�11 0 0 0 0 0

P 3.2227� 105 0.24 2370 2.05098� 105 0.31 8900

ZrO2 Ti–6Al–4V

P0 2.4427� 105 0.2882 3000 1.2256� 105 0.2884 4420

P�1 0 0 0 0 0 0

P1 �1.371� 10�3 1.133� 10�4 0 �4.586� 10�4 1.121� 10�4 0

P2 1.214� 10�6 0 0 0 0 0

P3 �3.681� 10�9 0 0 0 0 0

P 1.68063� 105 0.298 3000 1.056982� 105 0.2981 4420

*The properties were evaluated at T ¼ 300K.
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where P0, P�1, P1, P2 and P3 are the coefficients of temperature T (K) expressed in Kelvin and are unique to
the constituent materials [64]. Typical values for Si3N4, Ni, ZrO2 and Ti–6Al–4V listed in Table 5. In all cases,
the upper surface of the conical shell is assumed to be ceramic (Si3N4 or ZrO2) rich and the lower surface is
assumed to be pure metal (Ni or Ti–6Al–4V). The materials are assumed to be perfectly elastic throughout the
deformation. E0t, E0b, n0t, n0b, rot and rob are the Young’s modulus, Poisson’s ratio and density of the
homogeneous metal and ceramic materials of the shell.

Shells with two different types of geometry are assumed for computation of the critical dimensionless static
axial load. In first type shells (A), values of the critical dimensionless static axial load are obtained for gp201
because of the consideration of the ratio H/R2 ¼ 2 (see Refs. [40,60]). In second type shells (B), values of the
critical dimensionless static axial load are obtained for g4201 because of the consideration of the relation
L ¼ 0.25�R2 sin g (see Ref. [29]). Besides, the values of the longitudinal wavenumber (m) corresponding to
the critical static axial load is different from one and larger than the values of the circumferential wavenumber
(n) in first type shells (see Table 6). The values of the longitudinal wavenumber (m) corresponding to the
critical static axial load are equal one in second type conical shells. Type A conical shells are used in Tables 4
and 6. Type B conical shells are used in Tables 1–3 and 7–9. For FG conical shells, when compositional profile
changes linear, quadratic and cubic, and for full metal and ceramic conical shells as the wavenumbers
corresponding to the critical dimensionless static axial load are the same. The wavenumbers are shown only in
the column for the full ceramic shells.

In Table 7, variations of the values of critical dimensionless static axial load, critical dimensionless time
parameter and corresponding wavenumbers for homogeneous and FG-I type and FG-II type conical shells
composed of Si3N4 /Ni and ZrO2 /Ti–6Al–4V with different compositional profiles and loading speeds, are
presented.

When loading speed N0 is increased, values of the critical dimensionless time parameter and dynamic
wavenumbers are also increased. Wavenumbers corresponding to the dynamic critical axial load is bigger than
the wavenumbers corresponding to critical static axial load and when loading speed N0 is increased, this
difference increases more. Furthermore, the values of the critical dimensionless time parameter are very
sensitive according to the wavenumbers so they can have instantaneous variations. It is very important for the
examination the values of critical dimensionless time parameter.

According to the variations of the loading speed N0, comparing the values of critical dimensionless time
parameter of full ceramic conical shells with the values for FG conical shells, the largest effect (as percent) is



ARTICLE IN PRESS

Table 6

Variations of the values of critical dimensionless static axial load for FG-I and FG-II type conical shells with different compositional

profiles, R2/h and g (H/R2 ¼ 2)

R2/h g Si3N4 Si3N4/Ni Ni

Linear Quadratic Cubic Inverse quad

N̄
st
cr � 103; ðm; nÞstcr

300 101 2.317(14, 14) 1.770 1.663 1.763 1.876(18, 12) 1.521

300 151 2.455(17, 13) 1.875 1.762 1.868 1.988(18, 13) 1.611

300 201 2.539(17, 13) 1.939 1.822 1.932 2.055(19, 13) 1.666

500 101 1.391(18, 18) 1.062 0.998 1.058 1.126(21, 17) 0.913

500 151 1.474(21, 17) 1.125 1.057 1.121 1.194(22, 17) 0.967

500 201 1.524(21,17) 1.164 1.094 1.160 1.234(22, 17) 1.000

ZrO2 /Ti–6Al–4V

R2/h g ZrO2 Linear Quadratic Cubic Inverse quad Ti–6Al–4V

N̄
st
cr � 103 ðm; nÞstcr

300 101 2.349(14, 14) 1.310 1.229 1.305 1.391(18, 12) 1.179

300 151 2.489(17, 13) 1.388 1.302 1.382 1.474(19, 12) 1.249

300 201 2.574(17, 13) 1.435 1.346 1.430 1.524(19, 13) 1.291

500 101 1.410(18, 18) 0.787 0.738 0.783 0.834(21, 17) 0.707

500 151 1.494(21, 17) 0.833 0.781 0.830 0.884(22, 17) 0.749

500 201 1.545(20, 17) 0.862 0.808 0.858 0.915(22, 17) 0.775
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observed at quadratic case and the least effect is observed at inverse quadratic case (Note, the following
expression is used for percents: [(FG�Hom)/Hom]� 100%). At quadratic case; in FG-I type conical shells,
for N0 ¼ 1� 109; 3� 109 and 5� 109 (N/m� s), the effects are 56%, 101.2% and 94%, respectively; in FG-II
type conical shells the effects are 72.9%, 80.9% and 61.8%, respectively. At inverse quadratic case; in FG-I
type conical shells, for N0 ¼ 1� 109; 3� 109 and 5� 109 (N/m� s) the effects are 29.1%, 49.5% and 63.1%; in
FG-II type conical shells the effects are 45.8%, 64.6% and 42.3 %, respectively.

According to the variations of the loading speed N0, comparing the values of critical dimensionless time
parameter of full metal conical shells with the values for FG conical shells, the largest effect is seen at inverse
quadratic case and the least effect is seen at quadratic case. At inverse quadratic case; in FG-I type conical
shells, for N0 ¼ 1� 109; 3� 109 and 5� 109 (N/m� s) the effects are 29.9%, 33.4% and 25.8%, respectively; in
FG-II type conical shells the effects are 23%, 14.1% and 16.3%, respectively. At quadratic case; in FG-I type
conical shells, for N0 ¼ 1� 109; 3� 109 and 5� 109 (N/m� s) the effects are 15.3%, 10.4% and 11.8%,
respectively; in FG-II type conical shells the effects are 8.7%, 5.6% and 4.8%, respectively.

Comparison of the values of critical dimensionless time parameter for FG-I type and FG-II type conical
shells, the values for FG-I type conical shells are seen lower. Furthermore, in FG-I type conical shells; loss of
the stability is seen at the small values of the dynamic wavenumbers.

In FG-I and FG-II type conical shells, the values of critical dimensionless time parameter vary between the
values for full ceramic and full metal conical shells (see Table 7).

In Table 8, variations of values of critical dimensionless static axial load, critical dimensionless time
parameter and corresponding wavenumbers for homogeneous, FG-I type and FG-II type conical shells
composed of Si3N4/Ni and ZrO2/Ti–6Al–4V, respectively with different compositional profiles and semi-
vertex angle g are presented.

When semi-vertex angle g is increased, the values of critical dimensionless static axial load, the wavenumbers
corresponding to it and the values of dynamic wavenumbers are also decreased, but the values of the critical
dimensionless time parameter is increased.

According to the variations of the semi-vertex angle g, comparing the values of critical dimensionless time
parameter of full ceramic conical shells with the values for FG conical shells, the largest effect is seen at
quadratic case and the least effect is seen at inverse quadratic case. At quadratic case; in FG-I type conical
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Table 7

Variations of the values of critical dimensionless static axial load, critical dimensionless time parameter and wave numbers for

homogeneous, FG-I type and FG-II type conical shells with different compositional profiles and loading speeds N0 (R2/h ¼ 400; g ¼ 451;

L ¼ 0.25�R2 sin g)

N̄
st
cr � 103 ðm; nÞstcr N̄

st
cr � 103 ðm; nÞstcr N0� 10�9 (N/m� s) t̄cr ndincr

t̄cr ndincr

Si3N4/Ni

Linear Quadratic Linear Quadratic

0.851 (1, 15) 0.800 (1, 15) 1 3.290 17 3.628 17

3 5.904 21 6.801 22

5 7.443 26 7.784 26

Cubic Inverse quad. Cubic Inverse quad.

0.848 (1, 15) 0.902 (1, 15) 1 3.299 17 3.003 17

3 5.932 21 5.055 21

5 7.442 26 6.546 26

Si3N4 Ni Si3N4 Ni

1.114 (1, 15) 0.732 (1, 15) 1 2.326 17 4.284 17

3 3.381 21 7.592 22

5 4.013 26 8.824 26

ZrO2 /Ti–6Al–4V
Linear Quadratic Linear Quadratic

0.630 (1, 15) 0.591 (1, 15) 1 4.613 21 5.046 21

3 7.812 28 8.252 28

5 9.068 34 9.699 34

Cubic Inverse quad. Cubic Inverse quad.

0.627 (1, 15) 0.668 (1, 15) 1 4.636 21 4.257 21

3 7.834 28 7.509 28

5 9.102 34 8.531 34

ZrO2 Ti–6Al–4V ZrO2 Ti–6Al–4V

1.130 (1, 15) 0.567 (1, 15) 1 2.919 18 5.528 21

3 4.561 24 8.741 28

5 5.996 28 10.19 35
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shells, for g ¼ 301; 451; 601 the effects are 48.5%, 60% and 77.2%, respectively; in FG-II type conical shells the
effects are 53%, 72.9% and 97.5%, respectively. At inverse quadratic case, in FG-I type conical shells, for
g ¼ 301, 451, 601 the effects are 30.3%, 29.1% and 37.7%, respectively, in FG-II type conical shells the effects
are 31.7%, 45.8% and 64.9%, respectively.

According to the variations of the semi-vertex angle g, comparing the values of critical dimensionless time
parameter of full metal conical shells with the values for FG conical shells, the largest effect is observed at
inverse quadratic case and the least effect is observed at quadratic case. At inverse quadratic case; in FG-I type
conical shells, for g ¼ 301, 451, 601 the effects are 23.9%, 29.9% and 38.3%, respectively; in FG-II type conical
shells the effects are 20.3%, 23% and 18.6%, respectively. At quadratic case; in FG-I type conical shells, for
g ¼ 301, 451, 601 the effects are 13.3%, 15.3% and 20.6%, respectively; in FG-II type conical shells the effects
are 7.4%, 8.7% and 2.5%, respectively.

In Table 9, variations of values of critical dimensionless static axial load, critical dimensionless time
parameter and corresponding wavenumbers for homogeneous, FG-I type and FG-II type conical shells
composed of Si3N4/Ni and ZrO2 /Ti–6Al–4V with different compositional profiles and ratio R2/h are
presented.
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Table 8

Variations of the values of critical dimensionless static axial load, critical dimensionless time parameter and wave numbers for

homogeneous, FG-I and FG-II type conical shells with different compositional profiles and semi vertex angle g (N0 ¼ 1� 109N/m� s, R2/

h ¼ 400; L ¼ 0.25�R2 sin g)

g N̄
st
cr � 103 ðm; nÞstcr N̄

st
cr � 103 ðm; nÞstcr t̄cr ndincr

t̄cr ndincr

Si3N4/Ni

Linear Quadratic Linear Quadratic

301 1.013 (1, 15) 0.952 (1, 15) 2.862 18 3.125 18

451 0.851 (1, 15) 0.800 (1, 15) 3.290 17 3.628 17

601 0.617 (1, 12) 0.579 (1, 12) 4.449 16 5.058 16

Cubic Inverse quad. Cubic Inverse quad.

301 1.009 (1, 15) 1.074 (1, 15) 2.901 18 2.742 18

451 0.848 (1, 15) 0.902 (1, 15) 3.299 17 3.003 17

601 0.615 (1, 12) 0.654 (1, 12) 4.464 16 3.931 16

Si3N4 Ni Si3N4 Ni

301 1.326 (1, 15) 0.871 (1, 15) 2.104 18 3.603 18

451 1.114 (1, 15) 0.732 (1, 15) 2.326 17 4.284 17

601 0.808 (1, 12) 0.530 (1, 12) 2.854 16 6.370 16

ZrO2 /Ti–6Al–4V

Linear Quadratic Linear Quadratic

301 0.749 (1, 15) 0.703 (1, 15) 3.868 22 4.182 22

451 0.630 (1, 15) 0.591 (1, 15) 4.613 21 5.046 21

601 0.456 (1, 12) 0.428 (1, 12) 7.356 20 7.442 20

Cubic Inverse quad. Cubic Inverse quad.

301 0.746 (1, 15) 0.795 (1, 15) 3.882 22 3.601 22

451 0.627 (1, 15) 0.668 (1, 15) 4.636 21 4.257 21

601 0.454 (1, 12) 0.485 (1, 12) 7.384 20 6.215 20

ZrO2 Ti–6Al–4V ZrO2 Ti–6Al–4V

301 1.344 (1, 15) 0.675 (1, 15) 2.734 19 4.516 22

451 1.130 (1, 15) 0.567 (1, 15) 2.919 18 5.528 21

601 0.818 (1, 12) 0.411 (1, 12) 3.769 17 7.630 20
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When the ratio R2/h is increased, the value of the critical dimensionless static axial load are decreased, but
the value of critical dimensionless time parameter, the wavenumbers corresponding to critical static axial load
and the dynamic wavenumbers are increased. When the ratio R2/h is increased the value of the critical
dimensionless time parameter and dynamic wavenumbers increase quickly.

According to the variations of the ratio R2/h, comparing the value of critical dimensionless time parameter
of full ceramic conical shells with the value for FG conical shells, the largest effect is observed at quadratic
case and the least effect is observed at inverse quadratic case. At quadratic case; in FG-I type conical shells, for
R2/h ¼ 200; 400; 600 the effects are 29.8%, 56% and 83.3%; respectively; in FG-II type conical shells the
effects are 54.9%, 72.9% and 79.5%, respectively. At inverse quadratic case; in FG-I type conical shells, for
R2/h ¼ 200; 400; 600 the effects are 14.5, 29.1 and 38.2%, respectively, in FG-II type conical shells the effects
are 34.4, 45.8 and 68.4%, respectively.

According to the variations of the R2/h, comparing the value of critical dimensionless time parameter of full
metal conical shells with the value for FG conical shells, the largest effect is seen at inverse quadratic case and
the least effect is seen at quadratic case. At inverse quadratic case; in FG-I type conical shells, for R2/h ¼ 200,
400, 600, the effects are 19.5%, 29.9% and 38.2%, respectively; in FG-II type conical shells the effects are



ARTICLE IN PRESS

Table 9

Variations of the values of critical dimensionless static axial load, critical dimensionless time parameter and wave numbers for

homogeneous, FG-I and FG-II type conical shells with different compositional profiles and ratio R2/h (N0 ¼ 1� 109N/m� s, g ¼ 451,

L ¼ 0.25�R2 sin g)

R2/h N̄
st
cr � 103 ðm; nÞstcr N̄

st
cr � 103 ðm; nÞstcr t̄cr ndincr

t̄cr ndincr

Si3N4 /Ni

Linear Quadratic Linear Quadratic

200 1.694 (1, 8) 1.591 (1, 8) 1.840 14 1.930 14

400 0.851 (1, 15) 0.800 (1, 15) 3.290 17 3.628 17

600 0.568 (1, 18) 0.534 (1, 18) 5.122 23 5.925 23

Cubic Inverse quad. Cubic Inverse quad.

200 1.688 (1, 8) 1.797 (1, 8) 1.840 14 1.702 14

400 0.848 (1, 15) 0.902 (1, 15) 3.299 17 3.003 17

600 0.566 (1, 18) 0.602 (1, 18) 5.141 23 4.467 23

Si3N4 Ni Si3N4 Ni

200 2.219 (1, 8) 1.455 (1, 8) 1.487 13 2.113 14

400 1.114 (1, 15) 0.732 (1, 15) 2.326 17 4.284 17

600 0.744 (1, 18) 0.488 (1, 18) 3.232 21 7.457 23

ZrO2 /Ti–6Al–4V

Linear Quadratic Linear Quadratic

200 1.253 (1, 8) 1.175 (1, 8) 2.461 14 2.613 15

400 0.630 (1, 15) 0.591 (1, 15) 4.613 21 5.046 21

600 0.420 (1, 18) 0.394 (1, 18) 7.582 28 7.947 28

Cubic Inverse quad. Cubic Inverse quad.

200 1.248 (1, 8) 1.331 (1, 8) 2.473 14 2.268 14

400 0.627 (1, 15) 0.668 (1, 15) 4.636 21 4.257 21

600 0.419 (1, 18) 0.446 (1, 18) 7.590 28 7.455 28

ZrO2 Ti–6Al–4V ZrO2 Ti–6Al–4V

200 2.248 (1, 8) 1.128 (1, 8) 1.687 15 2.733 14

400 1.130 (1, 15) 0.567 (1, 15) 2.919 18 5.528 21

600 0.754 (1, 18) 0.378 (1, 18) 4.428 23 8.385 28
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17%, 23% and 11.1%, respectively. At quadratic case; in FG-I conical type shells, for R2/h ¼ 200, 400, 600 the
effects are 8.7%, 15.3% and 20.5%, respectively; in FG-II type conical shells the effects are 4.4%, 8.7% and
5.2%, respectively.

For all cases, when the compositional profile changes linearly and cubic, the values of critical dimensionless
static axial load and critical dimensionless time parameter are nearly the same (see Tables 6–9).

6. Conclusions

The buckling of functionally graded truncated conical shells subjected to axial compressive load varying as a
linear function of time is studied. The material properties of FG shell are varied in a state of arbitrary law
distribution along the thickness. Galerkin and Runge–Kutta methods and Wolmir criterion are applied to
determine the critical parameters. The results show that the values of the critical parameters are affected by
the configurations of the constituent materials, compositional profile variations, loading speed variations and
the variation of the shell geometry. Comparing the results of this study with those in the literature validates the
present analysis.
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The numerical results support the following conclusions:
(a)
 When the loading speed is increased, the values of the critical dimensionless time parameter and dynamic
wavenumbers are increased.
(b)
 When semi-vertex angle g is increased, the values of critical dimensionless static axial load, the
wavenumbers corresponding to static critical axial load and the values of dynamic wavenumbers are also
decreased, but the values of the critical dimensionless time parameter are increased.
(c)
 When the ratio R2/h is increased, the values of the critical dimensionless static axial load are decreased, but
the values of critical dimensionless time parameter, the wavenumbers corresponding to critical static axial
load and the dynamic wavenumbers are increased.
(d)
 When the compositional profile changes quadratic, comparing the values of the critical dimensionless time
parameter for full ceramic conical shells with the values of FG conical shells, the effect (as per cent) on the
values of the critical dimensionless time parameter is the highest, but when compositional profile changes
inverse quadratic, the effect is the lowest. Comparing with the full metal shells, it becomes opposite.
(e)
 Depending on the shell geometry, the longitudinal wavenumbers corresponding to minimum values of the
critical axial load may not be equal to one.
(f)
 For all cases, when the compositional profile changes linearly and cubic, the values of critical dimension-
less static axial load and critical dimensionless time parameter are nearly the same.
(g)
 For all compositional profiles, the values of the critical dimensionless time parameter are the highest at
quadratic case and are the lowest at inverse quadratic case.
(h)
 For all cases, the values of critical dimensionless time parameter of FG conical shells vary between the
values for full ceramic and metal conical shells.
Appendix A

Expressions Ai, Bi (i ¼ 1–6) are defined as follows:

A1 ¼ C11B1 þ C21B2; A2 ¼ C11B2 þ C21B1; A3 ¼ C11B3 þ C21B4 þ C12,

A4 ¼ C11B4 þ C21B3 þ C22; A5 ¼ C61B5; A6 ¼ C61B6 þ C62; B1 ¼ C10D,

B2 ¼ � C20D; B3 ¼ ðC20C21 � C11C10ÞD; B4 ¼ ðC20C11 � C21C10ÞD; B5 ¼ 1=C60,

B6 ¼ C61=C60; D ¼ 1= ðC10Þ
2
� ðC20Þ

2
� �

ðA:12A:13Þ

in which expressions C1k, C2k and C6k (k ¼ 0, 1, 2) are defined as follows:

C1k ¼ hkþ1

Z 0:5

�0:5
z̄k ðEt � EbÞV c þ Eb

1� ðnt � nbÞV c þ nb½ �
2
dz̄, (A.14.1)

C2k ¼ hkþ1

Z 0:5

�0:5
z̄k ðEt � EbÞV c þ Eb½ � ðnt � nbÞVc þ nb½ �

1� ðnt � nbÞVc þ nb½ �
2

dz̄; (A.14.2)

C6k ¼ hkþ1

Z 0:5

�0:5
z̄k ðEt � EbÞV c þ Eb

1þ ðnt � nbÞV c þ nb

: (A.14.3)
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